M 317 Exam 1 all problems worth 30 pts

1. Define :

a) the **Least Upper Bound** of a nonempty set $A \subset R$.

 $\begin{aligned} \alpha &= Lub(A) \iff i) \ \alpha &= UB(A) \ \text{and} \ \alpha \leq \beta, \ \forall \beta = UB(A) \\ ii) \ \alpha &= UB(A) \ \text{and} \ \forall \varepsilon > 0 \ \alpha - \varepsilon \neq UB(A) \end{aligned}$

b) an **accumulation point** of a nonempty set $A \subset R$

 $p = \operatorname{acc} \operatorname{pt} \operatorname{of} \mathsf{A} \Leftrightarrow \forall \varepsilon > 0, \, \mathring{N}_{\varepsilon}(p) \cap A \neq \emptyset$

c) an **isolated point** of a nonempty set $A \subset R$

 $p = \text{isol pt of } \mathsf{A} \Leftrightarrow \exists \varepsilon > 0, \, \mathring{N}_{\varepsilon}(p) \cap A = \emptyset$

- 2. Prove **ONE** of the following:
 - a) If *p* is the least upper bound for a nonempty set $A \subset R$, but *p* does not belong to *A*, then *p* must be an accumulation point for *A*.

If $\alpha = Lub(A)$ then $\forall \varepsilon > 0$, $\alpha - \varepsilon \neq UB(A)$ Then $\exists x \in A$ such that $\alpha - \varepsilon < x \leq \alpha$. But $\alpha \notin A$, so $x \neq \alpha$. That means $\alpha - \varepsilon < x < \alpha$ so $\forall \varepsilon > 0$, $\mathring{N}_{\varepsilon}(\alpha) \cap A \neq \emptyset$

b) If A is a nonempty open set in R, then $\sup(A)$ does not belong to A.

If *A* is open then all pts in A are interior pts. If $p = \sup(A) \in A$ then since $p \in A$, $\exists \varepsilon > 0$, $N_{\varepsilon}(p) \subset A$, i.e., $(p - \varepsilon, p + \varepsilon) \subset A$. But if $p + \varepsilon \in A$ then $p \neq \sup(A)$, so $p = \sup(A)$ cannot belong to *A*

c) If *p* is be an accumulation point for *A* then *A* contains a sequence $\{a_n\}$ converging to *p*.

If $p = \text{acc pt of A then } \forall n, \mathring{N}_{1/n}(p) \cap A \neq \emptyset$ For each n, choose $a_n \in \mathring{N}_{1/n}(p)$. Then $\forall n \quad |a_n - p| < \frac{1}{n} \text{ if } n > \frac{1}{\varepsilon} \text{ so } a_n \to p$

3. a) For the sequence $a_n = \frac{4n^3 + n^2 + 2}{n^3 + n^2 + 2}$, choose an *L* and find an *N* such that $|a_n - L| < 10^{-5}$ for n > N.

For large *n*, $a_n \approx 4$ so

$$|a_n - 4| = \left| \frac{4n^3 + n^2 + 2}{n^3 + n^2 + 2} - 4 \right|$$

= $\left| \frac{4n^3 + n^2 + 2}{n^3 + n^2 + 2} - \frac{4(n^3 + n^2 + 2)}{n^3 + n^2 + 2} \right|$
= $\frac{|-3n^2 - 6|}{|n^3 + n^2 + 2|} \le \frac{3}{n} < 10^{-5}$ if $n > 3 \cdot 10^5$

b) For
$$\lim_{x \to 2} \frac{x^2}{x^2 + 1}$$
, choose an *L* and a $\delta > 0$
such that $\left| \frac{x^2}{x^2 + 1} - L \right| < 10^{-5}$ for $|x - 2| < \delta$

For
$$x \approx 2$$
, $\frac{x^2}{x^2 + 1} \approx 4/5$ so
 $\left| \frac{x^2}{x^2 + 1} - \frac{4}{5} \right| = \left| \frac{5x^2 - 4(x^2 + 1)}{5(x^2 + 1)} \right|$
 $= \left| \frac{x^2 - 4}{5(x^2 + 1)} \right| < \frac{x + 2}{5 \cdot 2} |x - 2|$

If
$$|x-2| < 1$$
, then $\frac{x+2}{10} \le \frac{1}{10}$, so
 $\left|\frac{x^2}{x^2+1} - \frac{4}{5}\right| < \frac{1}{10}|x-2| < 10^{-5}$ if $|x-2| < 10^{-4}$

4. Is the sequence
$$a_n = \frac{(-1)^n n^2}{n^2 + 1}$$
 bounded?
 $|a_n| = \frac{n^2}{n^2 + 1} < 1$, so it is a bounded sequence

Does the sequence contain a convergent subsequence?

The B-W theorem asserts that every bounded sequence contains a cvg subsequence

Does the sequence $\{a_n\}$ converge?

Clearly a_{2n} converges to 1 while a_{2n+1} converges to -1, so by the uniqueness of limits theorem,

 $\{a_n\}$ is not convergent.

State theorems which justify your answers.

5. Find the following function limits and state a theorem that proves the limit or one that asserts the limit fails to exist:

a) $\lim_{x \to \infty} \sin x$

Let $a_n = 2n\pi$ and $b_n = 2n\pi + \pi/2$. Then $\sin(a_n) = 0$ and $\sin(b_n) = 1$, $\forall n$. Then by the uniqueness of limits theorem, the limit fails to exist.

b)
$$\lim_{x \to \infty} \frac{e^{-x}}{e^x + e^{-x}} = \lim_{x \to \infty} \frac{e^{-2x}}{1 + e^{-2x}} = \frac{\lim_{x \to \infty} e^{-2x}}{\lim_{x \to \infty} (1 + e^{-2x})} = \frac{0}{1}$$

by the arithmetic with limits theorem

alternatively, $0 < \frac{e^{-x}}{e^x + e^{-x}} < e^{-x}$ so the limit is 0 by the squeeze theorem

c) $\lim_{x\to 0} x^2 \cos x$ $-x^2 \le x^2 \cos x \le x^2$ so the limit is 0 by the squeeze theorem

alternatively,

 $\lim_{x \to 0} x^2 \cos x = \lim_{x \to 0} x^2 \lim_{x \to 0} x^2 \cos x = 0 \cdot 1$ by the arithmetic with limits theorem